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Example 6.3.4 Suppose X1, . . . , Xn
iid⇠ N(µ, 1). To test H0 : µ = µ0

vs Ha : µ = µ1, where µ1 > µ0, let us use the Neyman-Pearson Lemma
to find the most powerful critical region of size ↵.

The likelihood ratio is:

Now, we want to find a constant K and a region C such that
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In fact, we don’t really care what the value of K is, we only care for
what value of K⇤:

x � K
⇤
, (x1, . . . , xn) 2 C,

x  K
⇤
, (x1, . . . , xn) /2 C.

We determine the value of K⇤ based on the size of test ↵ and the
distribution of X.
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Let’s consider another application of N-P lemma:

Suppose X1, . . . , Xn ⇠ iid N(µ, 1). Find the most powerful test for
H0 : µ = µ0 vs Ha : µ = µ1 (µ1 > µ0) at the ↵ level of significance.

By the N-P lemma, the most powerful test is given by

�(x1, . . . , n) =

⇢
1 if ⇤  k,

0 if ⇤ < k,

where

The value of k is determined by the size of test ↵.

Under H0 : µ = µ0,

Thus, the rejection region {⇤  k} is equivalent to
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6.4 The power function of a test

In general, type I error is more series that type II error. Therefore,
we control the ↵ at a pre-specified level, then find a critical region,
C, based on the given ↵ that maximizes the power. By doing so, the
probability of type I error is controlled at ↵ level and the power (1��)
is maximized.

The Neyman-Pearson lemma is for testing a simple null hypoth-
esis H0 : ✓ = ✓0 against a simple alternative hypothesis Ha : ✓ = ✓1.
We might want to test, say, H0 : ✓ < ✓0 a composite null hypothesis
against Ha : ✓ > ✓0, a composite alternative hypothesis, pair of com-
posite hypotheses.

Let us consider a framework:

Definition 6.4.1 The power function, denoted as ⇡(✓), of a test
of H0 : ✓ 2 ⇥0 against Ha : ✓ 2 ⇥1 is given by

⇡(✓) =

⇢
↵(✓) for value of ✓ assumed under H0,

1� �(✓) for value of ✓ assumed under Ha.

The power function, ⇡(✓), is in fact, the probability of rejecting the H0

for a given value of ✓:

⇡(✓) = P (reject H0|✓)

Example 6.4.2 Suppose X ⇠ bin(5, ✓). We want to test

H0 : ✓ 
1

2
vs Ha : ✓ >

1
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Suppose our critical region is C1 = {x : x 2 {4, 5}}. Then the power
function is given by:

We sketch the power function for the given critical region C =
{x : x 2 {4, 5}}.

✓ ⇡(✓)

✓ 2 ⇥0 0.1 ↵(0.1) =

0.2 ↵(0.2) =

... ...

0.5 ↵(0.5) =

✓ 2 ⇥1 0.6 1� �(0.6) =

... ...

0.9 1� �(0.9) =

We sketch the power function for other critical regions C2 = {x : x 2
{1, 5}} and C3 = {x : x 2 {0, 1}} .
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Power function under critical regions C1, C2, and C3

Definition 6.4.3 Given a pre-specified significance level ↵, if a test

�(x1, . . . , n) =

⇢
1 if (x1, . . . , xn) 2 C,

0 if (x1, . . . , xn) /2 C,

satisfies P (reject H0|H0 is true)  ↵, then the test is called an ↵ level
significant test.

Definition 6.4.4 An ↵ level significant test with the smallest � (or
the greatest power) is called the uniformly most powerful test
(UMPT).
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Remarks:

1. There could be multiple tests (rejection regions) at a given ↵

level; we want the one that maximizes the power.

2. Unfortunately, uniformly most powerful tests rarely exist when
testing a simple null hypothesis versus a composite alternative
hypothesis, e.g.,

3. When testing a simple null hypothesis versus a simple alternative
hypothesis, e.g.,

the N-P lemma gives the uniformly most powerful test.

6.5 The likelihood ratio tests

The Neyman-Pearson lemma provides a method for constructing
the most powerful critical region for testing:

We now present a general method, the likelihood ratio test (LRT),
for constructing critical regions for the hypothesis tests that consist
of composite hypothesis such as:

LRTs are generalization of the Neyman-Pearson lemma, but they are
not necessarily uniformly most powerful. LRTs compare the maximum
likelihood under H0 with the unrestricted maximum likelihood for all
values in the parameter space, that is ✓ 2 ⇥.
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Suppose we have a random sample (X1, . . . , Xn)
iid⇠ f(x; ✓). The max-

imum likelihood under H0 is given by

The maximum likelihood for all values of ✓ 2 ⇥, is given by

Then, their ratio

⇤ =
maxL0

maxL
is referred to the likelihood ratio statistic.

Suppose we have

maxL0 = L(✓̃)  maxL = L(✓̂)

where ✓̃ is

and ✓̂ is

The equality holds i↵ ✓̃ = ✓̂.

• There are two scenarios to consider:

– If H0 is true, we expect:
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– If H0 is false, we expect:

• The ratio

⇤ =
maxL0

maxL
is bounded between 0 and 1.

• If ⇤ ⇡ 0, we would like to reject H0;
if ⇤ ⇡ 1, we would like to accept H0.

Definition 6.5.1 If ⇥ = ⇥0 [⇥1 and ⇥0 \⇥1 = ;, and if

⇤ =
maxL0

maxL
=

L(✓̃)

L(✓̂)
,

then the critical region

⇤  k

where 0 < k < 1, is a likelihood ratio test for testing H0 : ✓ 2 ⇥0

against Ha : ✓ 2 ⇥1.

Example 6.5.2 Suppose we have a random sample (X1, . . . , Xn) from
a N(µ, �2). Find the critical region of the likelihood ratio test for
testing

H0 : µ = µ0 vs Ha : µ 6= µ0.

Since the only choice for µ under H0 is µ0, we have

Further, we know the MLE of µ is µ̂ = X, so have
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The likelihood ratio statistic becomes

Hence the critical region of the likelihood ratio test can be derived as

We determine the critical region by the size of the test, ↵:
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We know X ⇠ N(µ0,
�2

n ) under H0, so we have:
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In Example 6.5.2, when the random sample is from a normal
distribution, it is relatively easy to find the critical region for the test,
since we know the distribution of the pivotal quantity for estimating
the parameter. This means we don’t have to derive the distribution
of ⇤. However, the distribution of ⇤ is often di�cult to derive, and
thus, it is often di�cult to determine the critical value k. In this case,
we can use the following approximation.

Theorem 6.5.3 For a large sample size, n,

�2 ln⇤ = �2 ln

✓
maxL0

maxL

◆
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2
1.

With reference to Example 6.5.2, we can find critical region using
Theorem 6.5.3.
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