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Chapter 1

Review of Probability and
Distribution (STAT 3100)

1.1 Probability
1.1.1 Probability - frequentist approach

1. Random experiment

- all possible outcomes can be listed.

- the outcome is generally uncertain.

2. Sample Space, S, a set of all possible outcomes.
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3. Random event, A

- a possible outcome

- a subset of sample space

- event space, A, a collection of all possible events.

4. Probability measure, P(-), a function defined over the sample
space mapping to [0,1]

1.1.2 Frequency interpretation
Example: P(A) = 0.9.

1.1.3 Independence of two events

A and B are independent



1.2. RANDOM VARIABLES AND THEIR DISTRIBUTIONS >

1.2 Random variables and their distributions

Definition 1.2.1 A random wvariable is a function that maps from
sample space to the real line.

Probability distribution function of a random variable X

1. Discrete random variable X:

- Probability mass function, pmf: f(x) = P(X = x)

2. Continuous random variable X

- Probability density function, pdf:
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- Note that, P(X = x) = 0.

- In a general form,

P(X € A) = /Af(x)dx

1.2.1 Cumulative distribution function (cdf).

Fz)=P(X <z), 0<F(x)<1.

F(x) is a non decreasing function:

1. Discrete case: F'(X) is a step function.



1.3. EXPECTATION, VARIANCE AND MOMENTS

2. Continuous case:

1.3 Expectation, variance and moments

1.3.1 Expectation: mean, average.

1. Expectation of the function of X.

2. Expectation of X.

3. Expectation of the linear combination.
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1.3.2 Moments

1. rth moment.

2. rth central moment.

3. Chebyshev’s inequality:
If E(X) = u and var(X) = o2, then, Ve > 0,

2

o
PIX ~p > <
4. Markov inequality: Ve > 0,
E(X)

P(X >¢) <
£



1.4. MOMENT GENERATING FUNCTION (MGF) 9

5. If X and Y are two random variables

var(aX + bY) = a’*var(X) + 2abcov(X,Y) + b*var(Y)

1.4 Moment generating function (mgf)

Definition 1.4.1 The moment generating function of a random
variable X, Mx(t) is given by

Mx(t) = E(e'), fort e (—0,9)

where 9 is a fixed value.

Example 1.4.2 Find the mgf for X ~ Bin(n,p).

Example 1.4.3 Find the mgf for X ~ Exponential(\).
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1. Note that, the mgf does not always exists. The characteristic
function px(t) = E(e™),i = v/—1, always exists for any random
variable.

2. Properties of mgf.
- Y =aX + b, then,
My (t) = " Mx (at)
Example: Z ~ N(0,1), Mz(t) = e"'/2. If X ~ N(p,0?), then

- X and Y are independent, then
Mx .y (t) = Mx(t)My(t).

- Use mgf to find the rth moment, F(X").

- Uniqueness of mgf.
If MX(t) = My(t), then f)((.’E) — fy(y),Vx =Y.



1.5. COMMON DISTRIBUTION

1.5 Common distribution

1.5.1 Discrete random variables

1. Bernoulli (p) and binomial (N, p) distributions

2. Geometric and negative binomial distributions

3. Hypergeometric distribution

11
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- Without replacement

- With replacement

4. Poisson distribution
A limiting form of binomial distribution when n — oo,p —
0, while A = np is constant, the number of successes X ~
Poisson(\).



1.5. COMMON DISTRIBUTION

1.5.2 Continuous random variables

1. Uniformla, b], f(z) = ﬁ,a <z <b.

2. X ~ Exponential(0).

Memoryless property: P(X >t + s|X > s) = P(X > t)

3. Normal distribution, X ~ N(u,o?).

1 (z—p)?
x) = e 22 X € (—00,00).
) = = (~00.00)

13
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4. X ~ Gamma(a, ), a, > 0,
1
(a)p®
E(X)=a8, var(X)=ap’

e >0

f@) =

- Special case of a Gamma distribution

X ~ Exponential(8) = Gamma(1l, j)

d
wafl:Gamma(Eﬂ), d=1,2,3,..

5. X ~ Beta(a, f8),a, 8 >0,

lla+B) o -1
f(x) F(&)T(ﬂ)x (1—2)"1, 0<ux1
o« B af
E(X) = L var(X) = TR ES YO



1.6. JOINT DISTRIBUTION

1.6 Joint distribution

1.6.1 Discrete case
1. Joint pmf: fxy(z,y) =P(X =2,Y =y),

ZZfX,Y<xay) =1, P(<X7 Y) S A) = ZZfX,Y(xvy)

(zy) €A

Example: X,Y ~ iid Geometric(p)

2. Marginal distribution

3. Conditional distribution

15
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4. Independence: X and Y are independent if Vx,y

P(X=2Y=y)=P(X=2)P(Y =y)

fxy(@,y) = fx(@)fy(y).
Note, if 3z, yo such that fxy(xo,v0) # fx(x0)fy(vo), then

1.6.2 Continuous case

X and Y are jointly continuous distributed if there is a function
fX,Y(xvy)7 V(.T,y) < (-O0,00), such that fX7Y(x7y) > 07 and Va <
b,c <d,

d b
P(a<x<b,c<y<d)://fx,y(:r,y)da:dy



1.6. JOINT DISTRIBUTION

1. Marginal:

2. Conditional:

3. X and Y are independent

17



I8CHAPTER 1. REVIEW OF PROBABILITY AND DISTRIBUTION (STAT 3100)

Example 1.6.1 f(xy(z,y) = 62%,0 < z < 1,0 < y < 1, find
P(X >Y).

1.7 Sampling distribution

1.7.1 Sample mean and sample variance

Suppose X1, Xo, ..., X,, is a random sample of size n from a population
with mean g and variance o2, then, the sample mean

- By central limit theorem (CLT),

- If X1, Xy, ..., X, are iid from N(u,o?), then
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If o2 is not known, we use the sample variance

- replace the ¢? by sample variance, we have

Theorem 1.7.1 If X1, ..., X,, is a random sample from N(u,c?), let
X and S? be the sample mean and sample variance, then we have

- X and S? are independent.
- X ~ N(,LL, %2)

(n—1)5? 2
- —0_2 ~ Xn—l'

X—p
" Sim "~ -t
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Theorem 1.7.2 If S? and S3 are the sample variances of two random
samples of size n1 and ny from two populations with the variances o3
and o3, then,

_ Si/ai

F=—"=~F
2 2 nlfl,ngfl-
S5/ 03



Chapter 2

Change of Random Variables

In this chapter, we consider the problem of finding the probability dis-
tribution function or the probability density function (pdf) of one or
more than one variables that is on the basis of other random vari-
able(s). For example, suppose Xji,..., X, is a set of random vari-
ables with a known joint probability distribution/density function
fx,..x,(x1,...,x,). Now, there is a random variable Y which is a
function of X;’s, say,

Y = h(Xy, ..., X5).
We want to find the probability distribution/density function for the
random variable Y.

There are several techniques of finding the probability distribu-
tion/density function in this kind of problems: the distribution func-
tion technique, the transformation technique, and the moment gen-
erating function technique. Here, we focus more on the distribution
function and the transformation technique.

2.1 Distribution function technique

Suppose X7, ..., X, is a set of continuous random variables with
a known joint pdf fx, . x, (z1,...,2,), and le

Y = h(X1,..X,).

21
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Given that Xi, ..., X, are continuous, Y is continuous, a straightfor-
ward way to find the pdf of Y, fy(y) is first to find the cumulative
density function (cdf) by determining the probability of

Fy(y) =P(Y <y) = P(h(Xy, ..., Xn) < 9)
and then get the pdf of Y by

_ OFy(y)
Ay

fr(y)

Example 2.1.1 If X ~ fx(x) with

_Jbx(l—2z) forO<z <1
fx(w) = { 0 elsewhere,

find the pdf of Y = X3.



2.1. DISTRIBUTION FUNCTION TECHNIQUE

Example 2.1.2 If X ~ N(0,0?), find the pdf of Y = | X]|.

23
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If Xq, ..., X, is a set of discrete random variables and Y = h( X3, ..., X,,),
we could work on the pmf of YV directly.

Example 2.1.3 If X; ~ Poisson(\1), Xo ~ Poisson(Xs2), X1 and X5
are independent and Y = X1 + X, find the pmf of Y.
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Remark: In the discrete case, we usually work on the probability
distribution function directly. In continuous case, it is often easier to
find the cumulative distribution function(cdf) and then differentiate
the cdf to get the probability density function.

An alternative popular way of finding the probability distribu-
tion/density function in the problem of the change of random vari-
ables is to use the transformation technique.

2.2 Transformation technique: one variable to one
variable

2.2.1 One-to-one correspondent

Suppose X ~ fx(z), where fx(x) is the probability density func-
tion of X. Let Y = h(X) where their relationship is one-to-one cor-
respondent. Find the probability density function fy(y) using the
transformation technique.

Theorem 2.2.1 Suppose X is a continuous random variable with pdf
fx(z) and Y = h(X). If h(x) is differentiable at all values of x and is
either a decreasing function or an increasing function such that there
is unique inverse function for X that X = h=1(Y), then, the pdf of Y
1S given by

oh”(y)
dy |

provided that ag—g) # 0. Otherwise, fy(y) =0.

Fey) = Fx(h () - '
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Example 2.2.2 With reference to Example if X ~ fx(x) with

[ 6x(l—2z) forO<az <1
fx(w) = { 0 elsewhere,

use the transformation technique to find the pdf of Y = X3,
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Example 2.2.3 If Fx(x) is the cumulative distribution function of
the continuous random variable X, find the probability density of Y =

Fx(x)

Example tells us that the cumulative distribution function F (z)
for any distribution follows a uniform [0,1] distribution. This fact
is very important not only theoretically, but also facilitates certain
simulation procedures for generating random samples that follow a
given distribution.
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2.2.2 Not one to one corresponding

The conditions underlying Theorem are often not met. For
example, when Y = X2, over the domain of X € R, the function
is concave rather than decreasing or increasing only. In this case,
we divide the domain of X in two non-overlapping regions: A; =
(—00,0), Ay = (0,00). Then, we find the pdf of Y in each of A; and
Ay using Theorem [2.2.1]

Example 2.2.4 Suppose X ~ N(0,1), find the pdf for Y = X2,
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2.2.3 Transformation technique: multivariables

Theorem can be generalized to situations where there are
more than one random variables being transformed. For example,
suppose we have a set of continuous random variables X, ..., X,, with
joint probability density function fx, _x,(z1,...,2,). Now suppose we
have another set of random variables Y7, ..., Y,:

Yi = h(Xy, .., X,)
Yy = ha(X1, ..., X,,)

Y, = ho(X1, s Xo).

Here, we may want to find the probability density function for each
of the Y’s or the joint probability density function of all Y’s or some
Y’s. For simplicity, suppose we focus on the case of one-to-one corre-
spondence in the sense that there is an unique set of inverse functions

X1 :gl(Yi;;Yn)
X2 :gg(Yi,,Yn)

X = gn(Yi, ..., Yy).

The below theorem, which is a generalization of the Theorem
to the multivariate case, can be used to find the joint distribution of
Yi,....Y,.

Theorem 2.2.5 Suppose Xi,..., X, s a set of continuous random
variables with the joint pdf fx, .. x,(T1,...,2,) and let Y1 = hi (X7, ..., X,), Yo =
ho( X1, .oy Xpn)y oo, Y = hy(Xy, ..., X)) be another set of random vari-

ables. If the h;(X1, ..., X)) functions are differentiable with respect to

each of X1, ..., X, and are one-to-one correspondent within the range

of X1,.... X, for which fx, x, (x1,..,2,) # 0, then, the joint pdf of

Y1, ..., Y, 1s given by

fY1,...,Yn(y17 7yn) = fX1,-~-,Xn(gl(y17 "'7yn)7 "'7gn(y1> 7yn)) ’ |J‘
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where J is called the Jacobian of the transformation and is given by

9z Oz, Om
oyr O0yo Oyn
Org Oy, Oxy
J = 9n Oy OYn
Oxn  Ozn ,, Otn
oy 0y OYn

Elsewhere, fv, v, (Y1,-syn) = 0.

Example 2.2.6 If the joint pdf of X1 and X5 1s given by

f (21, 9) = e~ @tm) for x> 0,29 > 0
XXM 27 otherwise,

1. find the joint pdf of Y1 = X1+ Xo and Ys = ﬁ;

2. find the marginal distribution of Ys.
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From Example 2.2.6, we find that the Theorem [2.2.5] can be used
to solve the problem of transforming n random variables to r random
variables for n > r. That is, we only have r Y’s or equations for n
random variables X's.

Example 2.2.7 If the joint pdf of X1 and X5 1s given by

1 for0<axz <1,0< 29 < 1
0 otherwise,

fX17X2(x17 xQ) - {

find the pdf of Y = X1 + Xs.



32
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Chapter 3

Order Statistics

Suppose X1, ..., X, is a random sample of size n from an infinite popu-
lation with a continuous pdf. Now, we arrange the values of X4, ..., X,
in an ascending order and denote them in the form of

For a random sample of size n, there are n! possible arrangements,
so, there are n! possible configurations of the orders.

Note that, the observations and order statistic are not one-to-one cor-
respondent.

33
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3.1 Distribution of minimum and maximum statis-
tics

Suppose X, ..., X,, ~iid fx(x) and are continuous. Let
Xy = min(Xy, Xo, ..., X;,)
be the minimum statistic and
Xy = max(Xy, X, ..., X,).

be the maximum statistic. Find the pdf’s of X ;) and X,).
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Example 3.1.1 Suppose Xy, ..., X, ~ iid uniform[0,0], 6§ > 0, find
the pdf’s for the minimum and mazximum statistics.

1
2 0<x<d
_) e V==
fx(@) {O otherwise
and
0 z<0
Fx(x) = §0§$§9,
1

x> 0.
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3.2 Distribution of the rth order statistics

Although the sample mean is often used to estimate the popu-
lation mean in many analysis we carry out, in some cases, it is often
better to use the median to describe the “location” of the data. In a
random sample X7, ..., X, from an infinite population, we denote the
sample median as X. What is the distribution of X? How about the
distribution of the other order statistic X,y for 1 <r <n?

(1) By the law of mean from calculus, we have

r+Ax
Plzr <X <zx+Az)= / fx(@t)dt = fx(z)Ax

for Ax — 0.

(2) By (1), for Az — 0, we have

Pz < Xy <o+ Az) = fx,, (z)Ax

(3) The pdf of the rth order statistic X, is given by

. fx (x)Ax
Frolo) = 08—
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Putting the results of (2) and (3) together, we can find the pdf of the
rth order statistic if P(z < X(,) < o+ Ax) is given. Now, how to find
Pz < Xy <o+ Ax)?

Given the P(z < X,y < 2 + Ax) we obtain the pdf of the rth order
statistics fx,, (7).

Apply the above result, we find the sample median X of a random
sample X7, ..., Xo,.1 of size 2n + 1 has the pdf of
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Example 3.2.1 Suppose X1, ..., X,, is a random sample from an expo-
nential population with mean 6. Find the distribution of the minimum
and the maximum statistics and the distribution of the sample median.

1
fx(z) = ge_x/o, x>0, 6>0

Fx(z)=1—e*% 2>0, #>0



Chapter 4

Point Estimation

In a statistical study, suppose a random sample X = (X,..., X))
from a given population is observed. We usually assume a paramet-
ric model for the population that each observation X;, fori =1, ....,n,
follows a identical distribution with a probability distribution function
f(x,0). For example, the birthweight of new born baby girls might fol-
low a normal distribution N (u,0?), life times of machine parts might
be assumed to follow a Gamma(a, ) distribution, and the daily num-
ber of paintings sold in a given art gallery might follow a Poisson(\)
distribution.

In statistics, a parametric model for a given population describes:

1. The general form of the probability distribution/density function
f(x;0) is known.

2. f(x;0) is a member of a distribution family {f(z;0) : 0 € ©}.
©: parameter space, a collection of all possible values of 6.
3. 0 is not known.

4. The statistical inference about the population, given the observed
data, is essentially inference about 6.

Given a parametric model, there are three main types of inference
problems:

39
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1. Point estimation: 6 = é(Xl, ..., X)) for estimating the unknown
0, 0 is called a point estimator.

- Construction of §: how to estimate 6.

- Evaluation of #: unbiasedness, efficiency, consistency and suf-
ficiency.

2. Interval estimation (confidence region of an estimate)

- Given a point estimate, we want to compute an interval
(91, ég) for 6 such that for some pre-specified probability, say,
(1 o OZ),

P(él Segég)zl—@.

3. Hypothesis tests

- Hypothesis: a statement about the parameter (or the popu-
lation), e.g.,

Hy:0=6y versus H,:0+#86,.

- Test Hy and make conclusion if Hj is true or false.
- Two types of error:

Type I error: reject the true Hy.
Type II error: do not reject the false H.

- Probability of making such errors:
a = P(type I error) = P(reject Hy|Hj is true)

B = P(type II error) = P(do not reject Hy|H, is false)
power = 1 — 3 = P(reject Hy|Hy is false)
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4.1 Evaluation of point estimations
Suppose a random sample Xi, ..., X, is collected from a popu-

lation and it is assumed that X; i f(x;0), for i = 1,....,n. Let

0 = é(Xl, ..., X,) be a function of X;’s that estimate 6. Then, 0 is
an estimator of 6.

Properties of a good estimator:

1. Unbiasedness:

2. Efficiency:

3. Consistency:

4. Sufficiency: Does (X1, ..., X,,) utilize all the information con-
tained in the data to estimate 67

5. Likeliness: é(Xl, ..., X;)] is the most likely value of ¢ given the
observed data Xj, ..., X,,. (Among all choices for €, € is the one
with the highest probability for observing the data).

6. Robustness: (X1, ..., X,)] has a sampling distribution that is not
too adversely affected by violations of assumptions made in the
model/analysis. (We will not cover this here).

4.1.1 Unbiased estimators

Suppose a random sample X7, ..., X, is from a given population
with probability distribution function f(x;6).

Definition 4.1.1 A statistic is a function of data (X1, ..., X,). Sup-
pose a statistic 0 = 0(Xq, ..., X)) is used to estimate the parameter 6.
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We say 0 is an unbiased estimator of 0 if and only if
E0(X1,....,X,)] = 0.

Example 4.1.2 If X,..., X, w Bernoulli(p), is X = 137" | X; an

unbiased estimator of p?

If an estimator 6 is biased for 0, the amount of bias is given by
bias(0) = E(0 — 6)
If § is unbiased, bias(d) = 0.

Definition 4.1.3 The estimator é(Xl, .y X)) is asymptotically unbi-
ased for 0 if )
lim bias(0(X, ..., X,)) = 0.

n—oo
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Example 4.1.4 Let X;,..., X, £ N(u,c?), and let

i=1 =1

where X = > | X1/n. Show that if S and Sy are unbiased estimators
for a®. If any one of the S? and S3 is not unbiased, is it asymptotically
unbiased?
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Example 4.1.5 If X4,..., X, " uniform(0,0), show that the mazi-
mum statistic is a biased estimator of 6. Also, modify this estimator
to make it unbiased for 6.
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4.1.2 Efficiency

Recall that in the Example {.1.2, if X1, ..., X, ° Bernoulli(p),
p1 = (X) and Py = X; are both unbiased estimators of p. If we are
asked to choose one that would be the better one to estimate p, which
one should we pick? We usually compare the variances of the two
unbiased estimator, the one having the smaller variance will be more
precise implying that it will be a better estimator.

Definition 4.1.6 Suppose 0, and 0y are two unbiased estimators of
parameter 6 of a given population. 0, is said to be relatively more
efficient than 05 if

var(6y) < var(s).

The relative efficiency, the ratio of the variances of the two esti-
mators

~

var(6y)
var(fs)’

i1s used to measure the efficiency of 05 relative to 6.

RE =
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Example 4.1.7 Suppose X4, ..., X, w Poisson(\). It is known that
E(X)=var(X) =\
Determine which one of the two estimators

1 n

n—1 Z(XZ _X)2

1=1

=X, h=5=

for X is more efficient?
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For some unbiased estimators, it might not be trivial to find their
variances. Therefore, it is hard to compare their efficiencies in terms of
their sizes of variances. Can we find the lower bound for the variance
of any estimator? If the variance of a given estimator equals to such a
lower bound, it will be the optimal one. Here, if we only focus on the
class of all unbiased estimators, the Cramér-Rao inequality gives
the lower bound of the variances among all unbiased estimators.
Definition 4.1.8 Cramér-Rao inequality: Suppose Xi,..., X, w
iid f(x;0). ]fé 15 an unbiased estimator of the parameter 6, then the
variance of 0 must satisfy the inequality

1

2
Oln f(x;0)
g | (2242

This bound is called the Cramér-Rao lower bound (CRLB).

var(0) >

Theorem 4.1.9 [fé is an unbiased estimator for 8 and the variance
of 0 attains the CRLB, then 6 is the uniformly minimum variance
unbiased estimator (UMVUE) for 0, and 0 is optimally efficient.
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Example 4.1.10 If X, ..., X;, ~ iid Poisson(\), find the CRLB and
compare it with the variance of Ay in Example |4.1.7,
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Definition 4.1.11 The efficiency of an unbiased estimator of
0 is the ratio of the CRLB to the variance of the estimator.

Example 4.1.12 If X;, ..., X,, “ N(p,0?), show that X = >_1" | X;/n

s the UMVUE for p.

So far, we focus on finding the UMVUE, the optimal estimators
that has the smallest variance among all unbiased estimators. However
sometimes, there is a biased estimator that has a smaller variance that
the UMVUE. So, which estimator works better? Furthermore, if we
have two biased estimators, which one should we take? To compare
two estimators that are not necessarily unbiased, we compare their
mean square errors.

Definition 4.1.13 The mean square error of an estimator 0 of the
parameter 0 is given by

MSE(f) = E[(6 — 0)?].
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An optimal estimator should be the one that minimizes the MSE(@)

Deﬁnition 4.1.14 [fé is unbiased for 0, and lim,,_, Uar(é) =CRLB,
then, 0 is asymptotically efficient.

4.1.3 Consistency

In general, the probability that the estimate of a parameter 6
exactly equals to the true value of @ is 0. The var(f) and MSE(f)
quantify the errors or fluctuations of @ for estimating . It is known
that if we increase the sample size n, the variance of the estimator will
generally decrease. We are then interested in how close 6 will be to 0
as the sample size increases. To get an idea, we study the asymptotic
properties of the estimate 0. For example, suppose a population X ~
N (p, 0?). The sample mean of a random sample of size n, X, would be
a good estimator in terms of unbiasedness and efficiency for population
mean f. Suppose we can increase the sample size, say let n — oo or
let n — N with N being the size of a large but finite population, then,
X — p. The increasing closeness of the estimate to the true value of
the parameter 6 as the sample size n increases is described by the
estimator property, consistency.

Definition 4.1.15 0 is a consistent estimator of the parameter 6 if
and only if for each € > 0

lim P(|0 —0] <e)=1

n—oo

We generally say that the estimate 0 converges to the true value of 0
in probability.
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Suppose X1, ..., X, is a random sample from an infinite population
with mean g and variance o2, the sample mean X is an consistent
estimate of the population mean.

In a similar idea, the Chebyshev’s inequality leads to the theorem
below.

Theorem 4.1.16 ]fé 1s an unbiased estimator of the parameter 0
and the var(d) — 0 as n — oo, then 0 is a consistent estimator of 6.

Example 4.1.17 Show that for a random sample from N(u,c?), the
sample variance S* = =5 3" (X; — X)? is a consistent estimator of
the population variance o>.
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Example 4.1.18 Let X1, Xo, ..., X, s f(x;6) where

e~ @0 >,

s =6

otherwise

Determine if the minimum statistic, X ) is unbiased, asymptotically
unbiased, and consistent for §.

First of all, we determine the unbiasedness of X(;). Recall that

Fxg (@) = n[l = ()" f(2;0)
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Example4.1.18 Now, we will show that X ;) is asymptotically unbiased
and consistent for 9.

Remark: Theorem [4.1.16| provides a sufficient condition for an estima-
tor being consistent but not a necessary condition. We can alterna-
tively show the consistency by the definition of consistency.
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4.1.4 Sufficiency

For a random sample X7, ..., X,, from a population with pdf f(x; @),
each observation X, provides information about the value of 6. If
an estimator (X7, ..., X,,) provides all information that the sample
Xq, ..., X, contains for estimating 6, 0 is said to be sufficient for 6.

Formally, we determine the sufficiency of an estimator by determining
if the conditional joint distribution of X, ..., X, given the estimator ¢
depends on the parameter 6 or not.

The conditional distribution of X4, ..., X, given 0 is given by

f(X1 = T, ,Xn = .I'nlé) =

If f(Xy =21, ..., X, = x,|0) depends on 6,

If f[(X1=u2,...,X, = xn\é) is independent on 6,
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Definition 4.1.19 The estimator 0 is a sufficient estimator of the
parameter 0 if and only if the conditional distribution/density of X1, ... X,
given 0 is independent of 6.

Example 4.1.20 If X, X5, X3 i Bernoulli(p), then show that, Y =

%(Xl + 2X5 + 3X3) is not a sufficient estimator of p.
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Sometime it is tedious to check whether an estimator is sufficient
for a given parameter by the definition approach. Alternatively, we
can use the factorization theorem to show the sufficiency of an
estimator.

Theorem 4.1.21 0 is a suffictent estimator of the parameter 6 if and
only if the joint probability distribution/density of the random sample
can be factorized as:

F(Xy =21, Xy = 20:0) = g(0,0) - h(zy, ..., 2)

where g(é, 6) depends only on 6 and 0, and h(z1, ..., x,) does not depend
on 6.

The idea of the factorization theorem is to factorize the joint distri-
bution into two parts:
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Example 4.1.22 If X;,.... X, w N(p,0?), show that X = 3" | X;

1s sufficient for .
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In some situations, we utilize the fact of the dependence of the sample
space (domain of the X) on the parameter 6 to show the sufficiency
of a given estimator.

Example 4.1.23 If X;1,..., X, i Uniform(0,0), show that the maxzi-
mum statistic is a sufficient estimator for the parameter 6.
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4.2 Methods of finding point estimators

We have seen that it is perfectly possible for there to be more
than one potential estimator for the same parameter. The previous
section provides us evaluation criteria of selecting a better or optimal
estimators among many. In this section, we focus on different methods
of constructing an estimator for a given parameter. We will introduce
the simplest method: the method of moments, the most popular
method (historically): method of maximum likelihood, and the
increasingly popular methods of Bayesian estimation.

4.2.1 The method of moments (MM)

The method of moments is also known as the substitution method.
It came with the simple idea of setting the sample moments equaling
to the corresponding population moments, a function of parameter(s),
to make up equations to solve for the unknown parameter(s).

Definition 4.2.1 The rth sample moment is defined as

n T

;o > i1 T

m, = =t——,
n

where we recall that the population moment is defined as

= E(X"), r=1,23,...

In general, if we have k& parameters in the population, we need to
have k equations to solve for the k£ parameters. So, we need k sample
moments and k£ population moments and set them equal.

Single parameter, 0:

Suppose X1, ..., X, ~iid f(z;0),let X =" | X;/n and find the first
moment F(X) = g(f), then
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Example 4.2.2 If X;,..., X, i Ezponetial(0), find the method of mo-

ments estimator (MME) for 6.

Two parameters: 6, 0.

Let X =30 & and X2 =30, )T(;Q and find E(X) = ¢1(61,60s), EB(X?) =
92(61, 02),

Example 4.2.3 If X;,..., X, w Gamma(a, B), find the MM estima-

tors for a and p.
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In some situations, it is convenient to use the variance rather than
the second moment. Suppose there are two parameters, 67 and 0y for
a given population. If

E(X) = 91(01, (92), V&I‘(X) = gg((gl, 02)

Then, let S§ =1 3" (X; — X)?. Setting
g1 (91, (92) = X; and
92(917 92) - Sga

we then solve for 6 and 6-.

Comments about MMEs.
- No guarantee that the MM estimators are unbiased.

- Simple and easy to compute.

- Can provide a good initial value for other estimating methods
that may need an initial value to start a computational /iterative

procedure.
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4.2.2 Method of maximum likelihood

Generally, any estimation method attempts to find parameter
values that lead to a model (e.g. a distribution; a linear model; etc.)
that best fits the data. The maximum likelihood approach does this
by finding a value for 8 such that it gives the maximum probability of
observing the observed data (most likely observed data).

Example 4.2.4 In an experiment, a coin was tossed 6 times in order
to estimate the p = P(head)

Let X be the number of heads among 6 tosses and X ~ Bin(6,p).
Suppose we observed that X = 2. Let us use the idea of maximum
likelihood to estimate p.
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Definition 4.2.5 If x4, ..., x, are observed values of a random sample
from a population with the parameter 6, the likelthood function of
the 0 is given by

n

L(0) = L(6;21,...,x,) = f(x1, ...y xp; 0) = Hf(xi;G),

1=1

which is the joint probability of distribution of the random sample
(X1, .., X)) = (21,...,2,) for values of 0 within its given domain

(0 €0).

Definition 4.2.6 The maximum likelthood estimate of 0 is the
value of O that mazximizes the likelihood function L(0).

How to find the maximum likelihood estimate (MLE)?

Under regular case

The method of maximum likelihood consists of maximizing the likeli-
hood function with respect to 6. In calculus, to find the maxima, we
take the derive of the function with respect to the 0, set the derivative
to zero and solve for the 6. Usually, we let

n

[(0) =InL(0) = lan(:Ei;Q) = Zlnf(xi;ﬁ).

1=1

Lemma 4.2.7 The 6 mazimizes L(0) if and only zfé mazximizes the

1(0).
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Example 4.2.8 If a randome sample X, ..., X, £ Exponential(0),

find the maximum likelihood estimator for 6.
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Under irregular case: You can not use the derivative approach.

Example 4.2.9 If X4,..., X, W Uniform(0,0), find the maximum like-
lihood estimator of 6.
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Comments on the maximum likelihood estimator.

1. If a sufficient statistic exists for § then the MLE of @ is a function
of the sufficient statistic. That is, the MLE of # is a sufficient
statistic.

2. MLE is known to be asymptotically efficient. That is,
lim Val'(éMLE) = CRLB.

n—oo

3. Invariance principle: if § is the MLE of 6, then g(é) is the MLE
of the function g(0).

4. Lack of uniqueness: there could be more than one MLE.

Example 4.2.10 If X1, ..., X, i N(u,0?), find the MLE of u, u?, o

and o.
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Example 4.2.11 [ X;,.... X, £ Uniform(0,60+ 1), find the maximum

likelthood estimator of 6.
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4.3 Bayesian estimation

In what is termed the ‘classical’ approach to inference, based upon
a frequentist interpretation of probability, we assume that the parame-
ter # is an unknown constant. We then consider the precision/variance
of that parameter estimate by considering its sampling distribution.

In Bayesian estimation, based upon a view of probability as a ‘de-
gree of belief’, we consider the parameter 6 to be a random variable
that follows a distribution. We make an assumption about the dis-
tribution that the 6 follows before we see the data. This distribution
is called the prior distribution. We denote the prior probability
distribution function of 6 by ¢(#).

This prior distribution may be based upon expert knowledge
about the system, and thus parameters, being studied; the results
of an analysis of a previous data set; or, if we have little information
about the parameter, we can choose a vague/non-informative prior
distribution which has a very large variance.

In Bayesian estimation, we update the information about the pop-
ulation from the prior distribution by that in the data via the likeli-
hood function to obtain the resulting posterior distribution.

Prior distribution of 9:

The likelihood of 6 given the data:

Posterior distribution of 0:
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Example 4.3.1 If X ~ Uniform(0,0), if we assume that 0 ~ Gamma(a =
2,8 =1), find the posterior distribution of 0.

Note that the posterior distribution contains all the distribution infor-
mation about our parameter, including its location and variance we
are therefore unconcerned with the idea of a sampling distribution in
Bayesian statistics.



70 CHAPTER 4. POINT ESTIMATION

Given the posterior distribution of 8, posterior mean of posterior me-
dian are typical Bayesian estimate of 6. The posterior mean of 0 is
given by A

(93 = E(9|3}1, ceny ZCn)

Example 4.3.2 With reference to Example|4.3.1], find a Bayesian es-
timator of 0.
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Definition 4.3.3 A prior distribution that leads to the posterior dis-
tribution belonging to the same distribution family is called a con-
jJugate prior, the distribution family that both prior and posterior
distributions belong to is called the conjugate famaily.

The conjugate family has nice mathematical property and convenience
in that, the posterior follows a known form of distribution.

Example 4.3.4 Suppose X ~ Binnomial(n,p), we assume that p ~
beta(a, ), find the posterior distribution of p.
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(Example continue)

The posterior distribution of p given the data follows the beta distri-
bution:

and we could obtain a Bayesian estimator for p straightly using the
mean of a beta distribution as:

Note that, if the prior is informative, then the prior has more impact
on the estimator. If the prior is not informative, the estimator depends
more on the data.
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Finally, although Bayesian methods are useful, in almost all non-
standard cases, and many standard cases, it is impossible to do the
mathematics analytically in order to obtain a neat posterior distribu-
tion. Therefore, most Bayesian inference is carried out using stochas-
tic computational approximation methods, for example, Markov chain
Monte Carlo (MCMC) methods, which might require intensive com-
putational cost.
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Chapter 5

Interval Estimation

5.1 Introduction

In Chapter 4, we introduced different methods to infer/estimate
the value of the parameter 6. As a point estimate 0 is a statistic in a
form of a single number that seldom equals to the true value of . We
use the mean square error to quantify the size of error, which includes
the bias and the variance of the estimate. Alternatively, we could use
an interval to quantify the error of the estimator.

5.1.1 Random interval — Frequentist/classical approach

Let (6;,0,) be a random interval. With an appropriate probability,
say 1 — a, we want to find values of 6; and 6, such that

PO, <0<0,) =

We refer to (6;,0,) as a confidence interval for 6.

Interpretation of a (1 — a)100% CI:

75
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Confidence coefficient or degree of confidence:

Confidence limits:

Question: how to determine (6;,6,) ?

5.2 Interval estimation for means

Example 5.2.1 X;,...,X, w N(u,0?), o? is known. We are inter-

ested in the value of .

The MLE for u:

We know that,

Then, we want to find values of y; and pu, such that:

Pl <p<p)=1-a,
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= W =

77
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Remarks for an CI construction:

e Need to specify a degree of confidence (1 — «);
e.g., let a = 0.05.

e Need to know the distribution of our estimator/pivot.

e Under a symmetric distribution, you can split the probability «
equally across the tails of the distribution for the estimator.

In the previous example, if a = 0.05, we have

— B
< Zy.o2s) = 0.95
O’/\/ﬁ ~ 0.025)

P(—Zy025 <

Theorem 5.2.2 If x is the sample mean of a random sample from
N(u,0?), o is known, then

is a (1 — «)100% confidence interval for the parameter pu.

General rules for finding confidence interval:

e If 6 is a location parameter, then the statistic usually involves a
difference.
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e If 0 is a scale parameter, then the statistic usually involves a ratio.

e The MLE or a sufficient statistic is often a good place to start
for finding 6, and 6,,.
Example 5.2.3 X4,..., X, i

the 95% CI for p.

N(u,0?), with 0% is unknown. Find
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Example 5.2.4 X;,..., X, P f(x) with E(X) = u and var(X) = o®.
To find the 95% confidence interval for p, we can use the central limit
theorem for when n is large.
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5.3 Interval estimation for the difference between
means

Example 5.3.1 Suppose we have Xy, ..., X, i N(ux,0%) andYy,...,Y,, i

N(py,0%). Find the 95% CI for ux — py-.

Case 1: 0% and o7 are known.
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Case 2: 0% and o} are unknown.

1). For ny > 30,719 > 30.

2). For small n; and ny (< 30), the procedure for constructing CI for

the ux — py is not straightforward unless we assume 0% = o3 =

2. Then
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5.4 Interval estimation for proportions

So far, we have focussed on the problem of estimating population
means. In many situations, we might need to estimate proportions,
percentiles, or rates, such as the percentage of defected products of
a production line, and prevalence of a disease in a given population.
To estimate these quantities, we assume we sample from a binomial
distribution with size of n with probability p of the event of interest.

Example 5.4.1 X ~ Bin(n,p), find the 95% CI for p.
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5.5 Interval estimation for the difference between
proportions

Example 5.5.1 X ~ Bin(n,p1),Y ~ Bin(m, ps).
Find the 95% CI for p1 — ps.
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5.6 Interval estimation for variances

The variance is a scale parameter. It measures the spread of
a population. Recall the general rule of interval construction, the
interval estimation for the variance involves a ratio.

Review of sampling distribution results.
Consider X,...,X, w N(u,0?). Then if X = > | X;/n and S? =
> i (Xi = X)?/(n —1):

1.

X
2. 3 (Xi = p)? /o ~ X,
2.

N th—1.

Example 5.6.1 If X;,..., X, i N(u,0?), find the 95% CI for o*.

We consider two cases: p is known and g is unknown.

Case 1: p is known, use > i (X; — u)?/0? ~ x2.
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Case 2: p is unknown.

- Estimate p by o1 = X.
- Use )0 (Xi = X)? /o> ~ xi_y, or, (n—1)8%/0” ~ x5,



Chapter 6

Hypothesis Testing

6.1 Introduction

Point estimation involves finding an estimate of the parameter, 0,
that is as close as possible to the true value of # based on the observed
data.

Interval estimation involves giving a range to the value of 8, such
that, the true value of 8 would be expected to fall in with a specified
degree of confidence. The estimate interval can be used to quantify
the error of a estimator.

Point estimation and interval estimation do not necessarily an-
swer specific queries such as:

is 0 = 0y7; is 0 > 60y7; etc.
where 6 is a specified value. The result of such queries may be im-

portant in determining some future course of action.

Example 6.1.1 Conviction of an accused criminal depends on whether
there is a DNA match in blood found at the crime scene with the de-
fendant’s blood.

87
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Example 6.1.2 A biologist may be interested in known if a gene will
express differently under two different conditions.

Example 6.1.3 A marketing analyst needs to make conclusion about
the market sharing of a given product on the basis of sample data.

These problem can be formulated as statistical hypothesis test-
ing problems. We try to answer these problems through statistical
hypothesis tests. Suppose X7, ...., X, is a random sample from a popu-
lation that follow a distribution with probability distribution function
f(x,0). A statistical hypothesis can be a statement about the param-
eter.

6.1.1 Basic idea and definitions

Example 6.1.4 Suppose a new cat diet claims to help obese cats re-
duce weight by more than 2lbs in one month. Previous research sug-
gests that the weight reduction on such a diet would be normally dis-
tributed with mean p and variance 1.2.

The conjecture p > 2 is a statistical hypothesis. If the conjecture is
false then the complementary hypothesis, u < 2 would be true.

To investigate whether the claim valid or not not, a random exper-
iment is conducted to generate data, the above hypothesis is tested
based on the observed data.

e Place a random sample of obese cats on new diet for one month
and record the weight reductions.
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e Assume the claim is not true, i.e, assume p < 2 is true.
(Null hypothesis, Hy.)

e Obtain a statistic that estimates u, say . Compute the proba-
bility that i > p under the Hy.

e Make a decision with regard rejecting or not rejecting Hy.

Definition 6.1.5 A statistical hypothesis is a statement about the
population (usually the distribution of a population).

A statement that fully specifies the distribution of a population is call
a stmple hypothesis. For example, suppose the weight reduction fol-
lows N(u,1.2), a statement such as statement 6 = 2.

Otherwise, the statement is called a composite hypothesis. For exam-
ple, a statement such as p < 2 (more than one value of p).

Null hypothesis, Hy:

Alternative hypothesis, H,:

General setting: null hypothesis vs alternative hypothesis.

Hy:0€0, vs H,:0e€06,

where parameter space © = Oy U O, and Oy N O; = ¢.
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As a result, we can accept one of Hy or H,, but not both.

6.2 Testing a statistical hypothesis

The decision regarding which one of Hy or H, is accepted is based
on the information we have from the data.

Note:

i) If our decision is “Hj is true”, we say we “accept” or “do not
reject Hy”, otherwise, we say we “reject Hy".

ii) We have only limited information about the entire population.
Therefore we never know conclusively which one of Hy or H, is
true. Sometime we will make the wrong decision.

iii) A good decision-making rule is desired such that the chance of
making the wrong decision is small.

iv) There are two types of errors that we can commit:
type I error and type II error.

Type I and type 1I error

Two possible outcomes of a hypothesis test: reject or do not reject,
Hy .

Actual fact (in the population): either “Hj is true” or the “Hj is false”.

Decision
Population reject do not reject
true Hy type I error
false Hy type II error




6.2. TESTING A STATISTICAL HYPOTHESIS 91

Critical region and test function

Given a random sample (z1,...,x,), a general procedure for testing
the hypothesis is as follows:

e Assume Hj is true, so that each observation of the random sam-
ple follows the distribution described by Hj.

e Partition the sample space €2 = {all possible values of (z1,...,2,)}
into two regions: C and its complement C°.

e Decision rule:

if (x1,...,2,) € C, reject Hy;

if (z1,...,2,) € C¢ do not reject Hy.

Definition 6.2.1 The test procedure partitions the sample space into
two regions: an acceptance region for Hy and a rejection region
for Hy. The rejection region of a test is sometime referred as the
critical region.

Definition 6.2.2 When the Hy is true, the probability of obtaining
a value of test statistic that the corresponding random samples fall
inside the critical region is called the size of the critical region or
the level of significance of the test.
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Test function:

1 i (2, 1) €C,
¢($1,---7$n)_{0 if(xlu"'uxn)ecc'

If ¢(x1,...,2,) =1, reject Hy; if ¢(xq,...,2,) = 0, do not reject Hy.

Note: we allow ¢ to take values between 0 and 1.

Refer to the obese cat example (Example [6.1.4]), suppose we are
testing about the mean of weight lost that

Hy:p=2 vs H,:p=3.

Our decision rule could be: reject Hy if and only if X > 2.6.
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Questions:

1) What is the probability that we make a false rejection (type I
error rate, )?

2) What is the chance that we do not reject a false Hy (type II error
rate, )7

We know that the distribution of sample mean X is:

Let’s compare the probability of type I error (o) and the probability
of type II error (5).

a = P(reject Hy|Hy is true) =
p = P(do not reject Hy|H is false)=

If we want to have a small probability of type I error, what should we
do and how this affects the probability of a type II error?
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If we want to have a small probability of type II error, what should
we do and how this affects the probability of a type I error?

Generally, it is felt more important to control type I error. So, we
usually choose a decision rule based on a pre-specified level of signifi-
cance.

For example, we specify a = 0.05, then our decision rue is derive based
on the pre-specified o?



6.2. TESTING A STATISTICAL HYPOTHESIS 95

Remark:

e The critical region C' is implemented on the observed values of
a statistic, and the decision rule depends on the distribution of
that statistic.

e For a discrete distribution, it may be impossible to devise a rule
with a specific o, in which case, we usually specify the maximum
size of the critical region to be a.

Example 6.2.3 Suppose X is the observed number of successes in 20
trials with the probability of success, p, for each trial.

Let’s say that to test Hy: p=0.9 vs H, : p = 0.6, we decide to fail to
reject Hy if X > 14, otherwise, we reject Hy.

Find the probabilities of type I error and type II error.
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6.3 The Neyman-Pearson theory

We have seen that in a hypothesis test, as a becomes smaller, (3
becomes larger, and thus, the power (1-8) becomes smaller. As we
try to increase the power, we also increase . To balance the tradeoft
between oo and power, we usually pre-specify the significance level and
then we search for a critical region that maximizes the power of the
test. Neyman and Pearson was the first to propose the “first fix «
then maximize the power” approach.

Definition 6.3.1 Suppose X4,..., X, w f(x,0). To test Hy : 0 = 0
vs Hy : 0 =0y, let C be the critical region such that:

If for any other critical region C* such that

we have

then we say C' is the best critical region or the most powerful
test.

There are many ways to partition the sample space to form a
critical region with size a. The goal is to find the one that maximizes
the power among all partitions with size « of the test. The Neyman-
Pearson Lemma instructs us how to find the best critical region.
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Example 6.3.2 Suppose X ~ bin(5,p).
We want to testHO:p:% vsHa:p:%.

0 1 2 3 4 5)

. | L 5 10 10 5 1

Under Hy: D m 3 om o om B m
_ 3y | 1 15 90 270 405 243
Under H,: 1 | T021 Tood To2d 1024 To2d 1004
Lo ) | g9 32 32 32 32 32
r .y 3 9 27 81 243

_ 1 .
Suppose we set o = 55.Then:

Thus, there are two candidate critical regions:

Now, let’s compare power:

97
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It is obvious that

Alternatively, we can look at probability (likelihood) ratios,
Ly _ f(x3)
Ly f(z;9)

For all points in critical region C' with P(x € C|H, is true) = P(x €
Clp = %) = «a, we want f(x; %) to be small in comparison to f(z; %)

In this example, the ratio is minimized when

6

Now, suppose we change a to Then, there are four candidate

35
critical regions.
Critical region Power Ratio
C) =
Cy =
Cs =
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Lemma 6.3.3 (Neyman-Pearson Lemma) If C is a critical re-

gion of size a, and k is a constant such that

<k, when (x1,...,x,) € C,

>k, when (x1,...,x,) ¢ C,

then C' s the best critical region of size « for testing Hy : 0 = 0y vs
Ha 10 = 01.

Idea: If Hy is true, the likelihood under H, should be greater than
the likelihood under H,, that is Ly > L; and the ratio of é—(l) is large.
Conversely, if Hy is false, we expect that Ly < Lq, so that the ratio of

% is small.
1

Thus, we want to find a critical region C such that for (xy,...,x,) € C,
we have a small ratio of é—(l’ The value of k is determined based on the

pre-specified «, such that for é—? < k, the ratio is believed to be small
enough to reject the H,.

The Neyman-Pearson Lemma guarantees a most powerful critical re-
gion when both the Hy and H, are simple hypothesis.
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Example 6.3.4 Suppose Xi,...,X, w N(u,1). To test Hy : p = pg
vs Hy @ o= p1, where py > g, let us use the Neyman-Pearson Lemma
to find the most powerful critical region of size .

The likelihood ratio is:

Now, we want to find a constant K and a region C such that



6.3. THE NEYMAN-PEARSON THEORY 101

In fact, we don’t really care what the value of K is, we only care for
what value of K*:

SIERST!

K*, (x1,...,z,) € C,
K*, (x1,...,z,) ¢ C.

We determine the value of K* based on the size of test o and the
distribution of X.

>
<
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Let’s consider another application of N-P lemma:

Suppose X1,..., X, ~ iid N(u,1). Find the most powerful test for
Ho:p=povs Hy: o=y (g > o) at the a level of significance,

By the N-P lemma, the most powerful test is given by

1 A<k
¢(x177¢n):{0 lfA<]€,

where

The value of k£ is determined by the size of test a.

Under Hy : p = po,

Thus, the rejection region {A < k} is equivalent to
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6.4 The power function of a test

In general, type I error is more series that type II error. Therefore,
we control the o at a pre-specified level, then find a critical region,
C, based on the given a that maximizes the power. By doing so, the
probability of type I error is controlled at a level and the power (1—/3)
is maximized.

The Neyman-Pearson lemma is for testing a simple null hypoth-
esis Hy : 0 = 0y against a simple alternative hypothesis H, : 6 = 6.
We might want to test, say, Hy : 6 < 6y a composite null hypothesis
against H, : 8 > 6y, a composite alternative hypothesis, pair of com-
posite hypotheses.

Let us consider a framework:

Definition 6.4.1 The power function, denoted as w(0), of a test
of Hy: 0 € ©g against H, : 0 € O1 is given by
(0) = a(f)  for value of 0 assumed under Hy,
T - B(0) for value of 0 assumed under H,.

The power function, w(0), is in fact, the probability of rejecting the H
for a given value of 0:

7(0) = P(reject Hy|0)

Example 6.4.2 Suppose X ~ bin(5,60). We want to test

1
vS H,:0> -

HQZ@S 5

O | —

Partitioning of sample space:
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Suppose our critical region is Cy = {x : x € {4,5}}. Then the power
function is given by:

We sketch the power function for the given critical region C' =

{z:2e{4,5}}.
0 7(0)
ey 01 a0.1)=
0.2 «(0.2) =
05  a(0.5) =

00O, 06 1—p(0.6)=

0.9 1-p8(0.9)=

We sketch the power function for other critical regions Cy = {z : = €

{1,5}} and C5 = {z: x € {0,1}} .
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Power function under critical regions C1, C2, and C3

1.0

0.8

pfun
0.6

0.4
|

0.2

Definition 6.4.3 Given a pre-specified significance level «, if a test

1 z’f(xl,...,a:n) EC,
0 if (x1,...,2,) & C,

satisfies P(reject Ho|Hy is true) < «, then the test is called an o level
significant test.

¢(371,...,¢n) =

Definition 6.4.4 An « level significant test with the smallest 3 (or
the greatest power) is called the uniformly most powerful test
(UMPT).
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Remarks:

1. There could be multiple tests (rejection regions) at a given «
level; we want the one that maximizes the power.

2. Unfortunately, uniformly most powerful tests rarely exist when
testing a simple null hypothesis versus a composite alternative
hypothesis, e.g.,

3. When testing a simple null hypothesis versus a simple alternative
hypothesis, e.g.,

the N-P lemma gives the uniformly most powerful test.

6.5 The likelihood ratio tests

The Neyman-Pearson lemma provides a method for constructing
the most powerful critical region for testing:

We now present a general method, the likelihood ratio test (LRT),
for constructing critical regions for the hypothesis tests that consist
of composite hypothesis such as:

LRTs are generalization of the Neyman-Pearson lemma, but they are
not necessarily uniformly most powerful. LRT's compare the maximum
likelihood under Hy with the unrestricted maximum likelihood for all
values in the parameter space, that is 0 € ©.
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Suppose we have a random sample (X7,..., X)) i f(x;0). The max-

imum likelihood under Hj is given by

The maximum likelihood for all values of 8 € ©, is given by

Then, their ratio

A= max L

max L
is referred to the likelihood ratio statistic.

Suppose we have

~ A

max Lo = L(0) < maxL = L(0)

where 0 is
and 0 is

The equality holds iff 0=20.

e There are two scenarios to consider:

— If Hy is true, we expect:
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— If Hy is false, we expect:

e The ratio
max L

A=

max L
is bounded between 0 and 1.

o If A = 0, we would like to reject Hy;
if A=~ 1, we would like to accept Hy.

Definition 6.5.1 I[f © = ©yU O, and Oy N O, =0, and if

A— max Ly L(6)
 maxL L(6)’
then the critical region
A<k

where 0 < k < 1, is a likelihood ratio test for testing Hy : 0 € O
against H, : 0 € ©.

Example 6.5.2 Suppose we have a random sample (X1, ..., X,) from
a N(p,0?%). Find the critical region of the likelihood ratio test for
testing

Hoy:p=po vs Hqy @ po # po.

Since the only choice for p under Hy is 9, we have

Further, we know the MLE of x1 is ft = X, so have
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The likelihood ratio statistic becomes

Hence the critical region of the likelihood ratio test can be derived as

We determine the critical region by the size of the test, a:
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We know X ~ N (uo, %2) under Hy, so we have:
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In Example [6.5.2], when the random sample is from a normal
distribution, it is relatively easy to find the critical region for the test,
since we know the distribution of the pivotal quantity for estimating
the parameter. This means we don’t have to derive the distribution
of A. However, the distribution of A is often difficult to derive, and
thus, it is often difficult to determine the critical value k. In this case,
we can use the following approximation.

Theorem 6.5.3 For a large sample size, n,

L
—2InA =—-21In (max 0) ~ X5

max L

With reference to Example [6.5.2, we can find critical region using
Theorem [6.5.3.
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Chapter 7

Test of Hypothesis of Means,
Variances and Proportions

7.1 Introduction

In general, we can formulate a hypothesis test in the form of: Hj :
0 € Oy against H, : 0 € O, for ©yNO; = (), and Oy, O; C O. In many
situations, a simple null hypothesis against a composite alternative
hypothesis can be formulated in different forms.

Two-sided alternative:
H()ZQZQO VS Ha:<97é(90,

Intuitively, we compare the point estimate 0 with 6y, and our decision
of the test is based on

e we don’t want to reject H, if § is ‘close to’ 0o;

e we would like to reject Hy if 0 is ‘much smaller’ or 'much larger’
than 6.

Then, we consider both tails of the distribution of 6 when constructing
the critical region.

With reference to the Example |6.5.2, suppose X1, ..., X, i N(u,0?),

113
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and we test:

Ho:p=ypo vs Hy:p# po.
Using the likelihood ratio statistic, the critical region for an « level
test is then given by

|Z — pio| > 24p2 - —=

§q

We refer this type of tests as a two-sided test.

One-sided alternative:

Case 1:
Hy:0=0, vs H,:0<86,.

e we don’t want to reject H if 6 is ‘close to’ Bo;
e we would like to reject Hy if 0 is ‘much smaller’ than 0.

Then, we only look at the tail of the distribution of 0 that takes on
small values when constructing the critical values.
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With reference to the Example|6.5.2, suppose X1, ..., X, W N(u,o?),

and we test:

Hoy:p=py vs Hy:p < pp.

Case 2:
Hy:0=0, vs H,:0>0,.

e we don’t want to reject Hy if § is ‘close to’ 0o;

e we would like to reject Hy if 0 is ‘much larger’ than 6.

Then, we only look at the tail of the distribution of 0 that takes on
large values when constructing the critical values.

With reference to the Example|6.5.2, suppose X1, ..., X, i N(u,0?),

and we test:

Hy:p=po vs Hy:p> po.
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General procedure for constructing tests:

1. Formulate Hy and H,, and specify the size of the test a.

2. Find an appropriate test statistic — generally a pivot with a dis-
tribution not dependant upon the parameter(s) under the Hj.

3. Determine the critical region based on the size of test a.

4. Compute the value of the observed test statistic based on the
sample data.

5. Make decision about rejecting or failing to reject (accepting) H
based on the following equivalent criteria:

(a) if the observed value of test statistic falls in critical region,
reject Hy; otherwise, do not to reject Hj.

(b) if the p-value (the probability of observing a value that is
more extreme than the observed statistic under Hy) is less
than or equal to «, reject Hy; otherwise, do not reject Hy.
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Concept of p-value:

o =

p-value =

7.2 Tests involving means

Example 7.2.1 (Miller and Miller’s Text) The specifications for a
certain kind of ribbons require a mean breaking strength of 185 pounds.
Five pieces of ribbon were randomly selected form different rolls having
breaking strengths of 171.6, 191.8, 178.3, 184.9 and 189.1 pounds. Use
this data to test Hy : pu = 185 against H, : pn < 185 at the 0.05 level of
significance.
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Alternatively, we compare the p-value with the significance level.

7.3 Tests for the difference between means

Many studies involve the comparison between two populations.
For example, we may be interested in knowing if women perform some
general computational tasks at the same rate as men or not. Or, we
want to know if Canadians spend more time (in hours) in watching
TV than American on average? This type of population comparison
problems can be formulated as a hypothesis test for the difference
between two population means.

Let X1,-+-,X,, be a random sample from a N(u1,0?) distribution
and Y7,---,Y,, be a random sample from a N(us,03) distribution.
At the 0.05 level of significance, we want to test

Hy:pp—pa=0 vs Hy:p — po #0.

The population variances o} and o3 are known.
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The population variances ¢} and o5 are unknown.

We consider two cases:

1. Sample sizes of ny and ny are large (ny, ne > 30).

2. Either or both sample sizes are small (< 30).
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Example 7.3.1 (Miller and Miller’s Text) The coverage (in square
feet) of two brands of cans of paint are compared. Four I1-gallon cans
of one brand cover on average 546 square feet with a a sample standard
deviation of 31 square feet, whereas four 1-gallon cans of another brand
cover on average 492 feet with a sample standard deviation of 26 square
feet. Assuming that cans from each brand are sampled from two normal
population with equal variances, test if two population have the same
mean or not at the 0.05 level of significance.
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7.4 Tests for variances

In hypothesis tests involving variances, similar to the hypothesis
test of means, we might have one sample problem that we want to test
whether the variance of a given population (02) equals to a specific
value (03) or not. In two samples problem, we might want to test
whether the two populations have equal variances or not. For example,
in the previous section, when we test whether the two population
means are equal or not and the two population variances are unknown,
to use the pooled variance method, we assume that the two variances
02 = o5. In this case, to validate the assumption of equal variances,
we test whether o2 equals o3 or not.

Recall the general procedure for constructing tests, in step 2,
we need to find an appropriate test statistic, a pivot statistic, for a
hypothesis test involving variance. We can use the results 2, 3, and 4
of sampling distribution in Section 5.6. for one sample problems.
Suppose X1, ..., X, w N(p,0?). Then if X = 31" | X;/n and S? =
>ina(Xi = X)?/(n —1):

2. (X = p)?fo? ~ G,
3. 2o (Xi — X)?/o? ~ X3y,
4 (n—1)S/0% ~ x5y,

7.4.1 Test for one variance

Given a random sample X7, -, X,, from a N(u,o?) distribution, we
want to test if 02 = o} or not at an « level of significance.
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Case 1: p is known.

Case 2: u is uknown.
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7.4.2 Test for comparing two variances

Just as we might be interested in comparing two population means,

we may also be interested in comparing two population variances: o?

and o3.
Suppose we have two random samples: Xy, -+, X, " N(u1,0%) and
Yy, Y, % N (p2,03). How do we test if 0 = 03 or not. What test

statistic should we use?

Recall Theorem [1.7.2] if S? and S7 are the sample variances of two
random samples of size ny and ns from two populations with the vari-
ances o7 and o3, then,

_ Si/oi

F= ~
S3/03

Fnl—l,ng—l-
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Example 7.4.1 (Miller and Miller’s Text) Assume we have two ran-
dom samples sampled from two normal populations with unknown mean
and unknown variances. The first sample with sample size n; = 13
yields a sample variance of st = 19.2, and the second sample with
sample size ny = 16 yields a sample variance of s3 = 3.5. We want to
test if o = o5 at the significance level of o = 0.02.
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7.5 'Tests concerning proportions

Suppose we have X ~ Bin (n,#), and we want to test
H0:0:90, VS HQ:Q#QO

Here, X is discrete random variable taking values of 0, 1, ..., n, and
so, its cdf is a step function. To construct critical region for a two-
sided alternative test at the a level of significance, we follow the below
procedure.

For a two-sided test, we want to define the critical regions as such, if
X2n(G) v rew ()

we reject Hy .
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For one-sided test: Hy : 6 = 6y, against H, : 6 > 6y, we define the
critical region for an « level test as:

Example 7.5.1 (Miller and Miller’s Text) If x = 4 of n = 20 patient
suffered serious side effects from a new medication, test Hy : 6 = 0.5
against the alternative hypothesis Ha : 0 # 0.5 at the a = 0.05 level of
significance. Here 6 is the true proportion of patients suffering sertous
side effects from the new medication.

Two approaches to test the hypothesis:

1. Compute the p-value.

2. Construct the critical region.
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For small value of n (< 20), it is feasible to compute the p-value
or to identify the critical region. For large n, we can use the normal
approximation to the binomial distribution. To test

H0:0:90, VS Haie#eo

at the a level, we construct the test statistic by using the central limit

theorem.
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7.6 Test concerning differences among k propor-
tions

Suppose we observe Xi,---, X, where each observation X; from an
independent binomial trial (distribution):

We want to test

H0:91:02:---:0k:(60) VS Halﬂ’i#j, s.t QZ#QJ

- There are k independent populations.

- If the n; are sufficiently large for each population, we construct k
independent test statistics

- By central limit theorem, we have

~ Recall that if Zy,...Z; <> N(0,1), then,

and therefore we can construct a summary statistic for our test:

- Under Hy:
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- Thus, we reject Hy if
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Let us consider an alternative formulation of the chi-square statistic,
2, that lends itself more rapidly to other applications. Suppose with
observed Xi,..., X} from k independent trials of size nq,...,ng, re-
spectively. We summarize the observed data in the following k£ x 2
table:

successes | failures
sample 1 1 ny — I
sample 2 T9 N9y — Xy
sample k T ng — Tk

Let fi; be the observed frequencies; equal to the value in the 7th row
and jth column in the table. The x? statistic summarizes the dif-
ference between the observed frequencies f;; and the expected fre-
quencies F;; of each cell in the table. Under the hypothesis that
0y = 0y = --- = 0 = 0y, the expected cell frequencies E;;’s are given
by:
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Example 7.6.1 (Miller and Miller’s Text) Based on the data summa-
rized in the table below, test whether the true proportions of shoppers
favouring detergent A and detergent B are the same in all three cities
at the o = 0.05 level of significance.

# favoring A | # favoring B | Total (n;)

Los Angeles 232 168 400
San Diego 260 240 500
Fresno 197 203 400

Total 689 611 1300
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7.7 The analysis of an k£ X c table

Suppose instead of have only two possible outcomes (e.g. yes or
no), we have ¢ > 2 possible outcomes. For example, in Example(7.6.1],
we may ask the shopper whether he/she prefers detergent A, detergent
B, or has no preference. Then we may collect and summarize data as
follows:

# favoring A | # favoring B | # no preference | Total (n; )

Los Angeles 174 93 133 400
San Diego 196 124 180 500
Fresno 148 105 147 400

Total (n) 518 322 460 1300
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In this more general case, we might want to test wheter the distri-
butions of shoppers preferring A, B, or having no preference, are the

same among the three cities.

Hy: 011 = 0 = 031, and 012 = Oy = O3
VS
H,: 041,091,603 are not all equal, or,
019, 099, 39 are not all equal, or both.

Under the H() . (911 = 921 = (931 = (91, and (912 = 922 = (932 = (92.
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Here, we present more application examples of using x? test using a
k x ¢ table. Suppose we interviewed 40 boys and 40 girls for which one
is his/her biggest fear among the snake, blood, and darkness. Data
are summarized in the following table.

Biggest fear
Gender | Snakes Blood Dark | Total (n;)
Boys 12 19 9 40
Girls 15 13 12 40
Total (nj) | 27 32 21 80

Notation:

X;; = the number of observations in the ith population with the jth
outcome, i1 = 1,2 and 7 = 1,2, 3.

0;; = the true proportion of subjects with the jth outcome in the ith
population , 2 =1,2 and j = 1,2, 3.

n;. = row total for population ¢,
i.e., total number of observations in population .

n_; = column total for outcome j,
i.e., total number of subjects expressing j** outcome.
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We are typically interested in answering two questions about the sys-
tem described by our contingency table.

Question 1: Is the distribution of biggest fears for boys the same as
that of girls?

Hy : 011 = 021 and 012 = 09
VS
Ha . 911 75 921, or 812 ;é 922 or both.
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Question 2: Are gender and biggest fear independent?

In general, we can interpret the joint probability of two events as

m; = P(j" outcome and in population 7)
= P(a sample is from population i and expresses jth outcome).
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7.8 Test of the goodness of fit

The y? tests discussed so far can be thought of as testing whether
the data comes from a specified distribution, e.g., binomial distribu-
tion, multinomial distibution. If that is the case, the observed data
should be close to what we would expect under the given distribution.

With this principle in mind, we could move one step further. Given
a set of observed data, we could assume that the observed data come
from a specified distribution. Then, a hypothesis test is often con-
ducted to attempt to validate our assumption.

Essentially, a goodness-of-fit test is used to test how well a pro-
posed model (distribution) fits the observed data. The x? test is often
a common choice for carrying out a goodness-of-fit test.

Example 7.8.1 (Miller and Miller’s Text) Based on the data shown
in the table below, we want to test whether the number of errors a com-
positor makes in setting a galley of type is a random variable having
a Poisson distribution.

Observed Poisson Expected
Number of frequencies probability frequencies
errors fi with A =3 E;
18
53
103
107
82
46
18
10
2
1

-}

© 00 3 O U = W N
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Step 1. Estimate the Poisson parameter \.

Step 2. Compute the probability for each observation under the Poisson
distribution (\).

Step 3. Compute the expected frequencies.
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Step 4. Test the goodness-of-fit of the Poisson distribution to the ob-
served data.

If Poisson distribution is an adequate distribution that fits the ob-
served data well, we expect to see that the f; are close to the E;. Then2,
(f; — E;)* would be small and, thus, the statistic x* = >, %

would be small.

Hy: X ~ Poisson(\), against H, : X ¢ Poisson(\).
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Chapter 8

Non-parametric Tests

8.1 Introduction

In Chapter 6 and 7, we introduced hypothesis testing procedures
that are applicable to a wide range of practical problems. However,
a major drawback is that these testing procedures are derived based
on an assumption about the distribution of the random variables (ob-
servations) of the study. That is, we assume that the data collected
is a random sample from a given population with a known distribu-
tion that depends on the unknown parameters. The whole testing
procedure is then focusing on the parameter(s), for example, we test
whether an unknown parameter equals a specified value.

As these hypothesis tests depend heavily on the correctness of
distribution assumption of a given population, the violation of the
distribution assumption might seriously affect the significance level,
i.e., the control of the type I error. Violations of the distribution
assumption may due to improper assumption of the distribution of
the population, or could be due to, say, undetected outliers. Here is
an example where the distribution assumption is violated.

Example 8.1.1 When estimating the average income (1) of a given
population, a random sample from a normal population of mean pu and

141
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2

variance o is assumed. Consider a hypothesis test of

Ho:p=po wvs Hg:p> pp.

An often used test statistic and critical region are given as:

However, in reality, distributions of income are often highly skewed.

Since the underlying distribution of income is not normal, the resulting
t statistics will not follow a t distribution. Then an « level critical
region defined based on the symmetric ¢ distribution may result in a
test with a smaller significance level of a* < a. In other words, we use
a more stringent threshold value than we mean to, and the resulting
test will be less powerful.
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In statistical inference, another concept of "robustnss” was in
introduced in Chapter 4 in the connection with the evaluation of the
parameter estimate. We here provide a definition to "robustness”.

Definition 8.1.2 An estimator is said to be robust if its sampling
distribution is not seriously affected by the violation of underlying as-
sumptions made.

It is difficult to ascertain or determine whether an estimator is robust
or not. Extend this concept to the problem of hypothesis test, a test is
robust if the sampling distribution of the test statistic is not seriously
affected by the violation of underlying assumptions made. In general,
we have the following consequence:

Violation of model assumption =
A wrongly specified distribution of test-statistic =
A wrongly specified the critical region for a given level of significance.

For the purpose of conducting a robust hypothesis test, an alterna-
tive is to use non-parametric methods which are based upon test
statistics that are parametric distribution free (i.e. make no as-
sumption about the population in a parametric form).

In general, non-parametric tests are robust compared to equivalent
parametric tests. For example, if we thought that the data came from
a normal population, but in fact it did not, the power and significance
level of a non-parametric test would be unaffected; not necessarily the
case for parametric hypothesis.

Question: If we don’t know the underlying distribution, then what
aspect of the data provides us information about the underlying dis-
tribution for, say, comparative purposes, in a non-parametric setting.
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Suppose we wish to compare two samples collected from 2 populations:
X1, X0, X, and Y1,Y5,....Y,,.

Use this data, we want to test if the two population have the same
distribution.

Or we may wish to test if one distribution is shifted somewhat relative
to the other.
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8.2 Sign test

Suppose we have a random sample (X1, Xo, ..., X,) and we want
to test if the median of the population i = fiy or not.

How many observations do we expected to be greater than the median

of a population?

Under the null hypothesis, how many observations do we expected to
be greater than fiy?

Let D be the number of observations greater than fiy. What is the
distribution of D?
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Thus, to test

Hy:ji=fo  vs  Hy:fi# jio,
at the a level of significance, we use:

test statistic:

critical region:

This is called the sign-test.

Example 8.2.1 The following data represent the number of hours
that a rechargeable hedge trimmer operates before a recharge is re-
quired:

1.5,2.2,0.9,1.3,2.0,1.6,1.8,1.5,2.0,1.2,1.7.

At the 0.05 level of significance, test that this particular trimmer has
between charge intervals that follow a distribution with a median of
1.8 hours duration.
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Now, say we are interested in testing the population mean. Can we
still use the sign test?

8.3 Paired-sample sign test

The sign test is often used when we have paired data. Suppose
we have n pairs of observations: (X1,Y1), (Xo,Y2),...,(X,,Y,). If the
X’s have mean p; and the Y’s have mean 9, we may want to test if
(1 — pe = dy, where the dy is the hypothetical difference between the
two means under the null.
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Example 8.3.1 (Miller and Miller’s Text) A taxi company is trying
to decide whether the use of radial tires instead of reqular belted tires
improves fuel economy. Sixteen cars are equipped with radial tires and
driven over a prescribed test course. Without changing drivers, the
same cars are then equipped with reqular belted tires and driven once
again over the test course. The gasoline consumption (km/L) for each
run s given in the following table. We want to test if the car equipped
with radial tires has a better fuel economy than those equipped with
reqular belted tires?

Car 1 2 3 4 5 6 7 8
Radial 4.2 4.7 66 7.0 6.7 45 57 6.0
Belted 4.1 49 6.2 69 68 44 57 58

Car 9 10 11 12 13 14 15 16
Radial 74 49 6.1 52 57 6.9 68 4.9
Belted 6.9 49 6.0 49 53 6.5 7.1 438




8.4. THE SIGNED-RANK TEST 149

8.4 The signed-rank test

In a one sample test, the sign test only utilize the plus and minus
sign of the differences (greater or smaller relationship) between the ob-
servations and the hypothetical median [iy or mean py. Alternatively,
in a paired-sample test, the plus and minus signs of the differences
between the paired observations are used. However, it does not use
the information contained in the magnitude of the differences.

In 1945, Frank Wilcoxon proposed the Wilcoxon signed-rank test that
does utilize both the information in direction and magnitude of the
differences.

The Wilcoxon signed-rank test can be applied when we have a sym-
metric continuous distribution. Under this condition, we can test
Hy : = pg for one sample, and Hy : 1 = po for a paired-sample.

Suppose we have a random sample X, --- , X5 from a population with

mean 4. We assume that the population has a symmetric distribu-
tion. At the a level of significance, we want to test Hy : i = po against

Hy : o # po.
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The distribution of T (or T) is summarized in this table:

CHAPTER 8. NON-PARAMETRIC TESTS

T+

possible outcomes

# of outcomes

probability

15

total
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Distribution of random
variable corresponding

w a1

6/32
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L 23456 7
Distribution of random variable
corresponding to T
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Example 8.4.1 (Miller and Miller’s Text) The first column of the
following table contains the 15 measurements of the octane rating of
a certain kind of gasoline. Let us use the signed-rank test at the 0.05

level of significant to test whether the mean octane rating of the given
kind of gasoline is 98.5.

measurement d; rank D;

97.5 -1.0 4
95.2 -3.3 12
97.3 -1.2 6
96.0 -2.5 10
96.8 -1.7 7
100.3 1.8 8
974 -1.1 5
95.3 -3.2 11
93.2 -0.3 14
99.1 0.6 2
96.1 -24 9
97.6 -09 3
98.2 -0.3 1
98.5 0.0

94.9 -3.6 13
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Theorem 8.4.2 Under the assumptions required by the signed-rank
test, TV is a random variable with the mean

E(T+) — w

and the variance

var(T*) n(n + 12)512n + 1).

This result holds for for T— as well.

Proof: The assumption required by the signed-rank test is that: 1)
for the one sample test, a random sample is from a population with a
symmetric distribution; and 2) for the paired-sample test, the paired
differences are from a population with a symmetric distribution.
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The result of Theorem can be applied to the Example [8.3.1
concerning a paired-sample test with a normal approximation to the
test statistic T,

Car 1 2 3 4 5 6 7 8
Radial 4.2 4.7 6.6 7.0 6.7 4.5 57 6.0
Belted 4.1 49 62 69 68 44 57 58

Car 9 10 11 12 13 14 15 16
Radial 74 49 6.1 52 57 6.9 6.8 4.9
Belted 6.9 49 6.0 49 53 6.5 7.1 4.8
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8.5 Wilcoxon rank-sum test: the U test

The sign-test and Wilcoxon’s signed-rank test are two alternative
procedures for one-sample tests or equivalently paired tests. Now, we
consider the problem where we have two independent (i.e. no pairing)
random samples from two populations with continuous distributions
that are obviously not normal. The Wilcoxon rank-sum test is
an alternative nonparametric procedure to the two-sample t-test, in
which, the normality assumption of the population distribution is not
required.

Suppose we have a random sample X,..., X, of size n; from a
population with mean y; and another random sample X, 41, ..., X5, 40,
of size no from a population with mean ps. We want to test Hy : pup =
(o against a suitable alternative. In general, n; < ns. Then the
Wilcoxon rank-sum test is proceeded as follows:

Sample 1 Rank Sample 2 Rank
X1 Ry Xni+1 Ry 41
Xo Ry Xny+2 Ry 4o
X3 R3 Xn1+3 Rn1+3
an Rm X2TL1 R2TL1
Xn1+n2 Rn1+n2
Wi =370 R Wo =330 " Ry
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The total ranking W; 4+ W5 depends on the total sample size ny + no.
In general,

Once we have determined Wy, W5 can be determined easily by

The principle of rejection rules:



8.5. WILCOXON RANK-SUM TEST: THE U TEST 157

In actual practice, our rejection rule based on the following statistics:

for one-sided tests:

U=

Us =

for two-sided tests:

U:

Properties of U; and Us:

1. Uy + Uy = nyng, and Uy, Us € [O,TLlTLQ].
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Properties of Uy and Us:

2. Under the assumption required by U test, U; and U, are random

variables with mean
LANLD)

2

and the variance

0_2 . nlng(nl + N9 + 1)
B 12 ‘



8.5. WILCOXON RANK-SUM TEST: THE U TEST 159

Example 8.5.1 The nicotine content of two brands of cigarettes, mea-
sured in milligrams, was found to be as follows:

andA\z.z 4.0 6.3 54 4.8 3.7 6.1 3.3
Brand B| 4.1 0.6 3.1 2.5 4.0 6.2 1.6 2.2 1.9 5.

Test the hypothesis, at the 0.05 level of significance, that the median
nicotine contents of the two brands are equal against the alternative
that they are unequal.
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Brand A Rank Brand B Rank

2.1 4.1
4.0 0.6
6.3 3.1
5.4 2.5
4.8 4.0
3.7 6.2
6.1 1.6
3.3 2.2

1.9

5.4

Wy = Wy =

Normal approximation for two-sample test

When both sample sizes exceed 8, i.e., ny > 8 and ny > 8 , the
sampling distribution of U; (or Us) approaches the normal distribution
with mean and variance as

nins nlng(nl + N9 + 1)
2 12 '

We can thus use the normal approximation to form a test statistic

E(U) = var(Uy) =

for the U test, where the critical region is defined as:
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